

SIDDARTHA INSTITUTE OF SCIENCE AND TECHNOLOGY:: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road – 517583 OUESTION BANK (DESCRIPTIVE)

Subject with Code: Concrete Technology (18CE0136)

Course & Branch: B.Tech - CE

Regulation: R18

Year & Sem: IV-B.Tech & I-Sem

UNIT –I <u>CEMENTS & ADMIXTURES, AGGREGATES</u>

1	a	What is the function of gypsum in the cement?	[L1][CO1]	[2M]
	b	What do you mean by hydration?	[L1][CO1]	[2M]
	c	List the advantages of using plasticizers?	[L1][CO1]	[2M]
	d	What is known as admixtures?	[L1][CO1]	[2M]
	e	Difference between basic ingredients of concrete and admixtures.	[L1][CO2]	[2M]
2		hat are Bouge's compounds? Explain in detail how each one of these compounds	[L1][CO1]	[10M]
	inf	luences the strength and setting properties of cement.		
3	a	Explain heat of hydration and hydration process of cement in detail.	[L2][CO1]	[5M]
	b	Explain setting time of cement and factors effecting setting time of cement.	[L2][CO1]	[5M]
	a	Discuss about the chemical composition of Ordinary Portland cement.	[L2][CO1]	[5M]
4	b	What are the different grades of cement and explain each.	[L1][CO1]	[5M]
	a	Explain the term super plasticizers. How are they useful in concrete production?	[L2][CO1]	[5M]
5	b	Explain the advantages of using plasticizers and super plasticizers in concrete	[L1][CO1]	[5M]
		making.		
	a	Briefly write the significance of following properties:	[L2][CO1]	[10M]
6		i) Specific gravity		
U		ii) Bulk Density		
		iii) Porosity		
		iv) Absorption		
7		fine the term "Bulking of aggregates". Explain its significance with reference to	[L1][CO2]	[10M]
		ncrete making. Explain the simple field test to determine the bulking of aggregates.	<u>[] 1][(001</u>]	[5]
8	a	What do you mean by soundness of aggregate? Explain.	[L1][CO2]	[5M]
	b	What is alkali-aggregate reaction? And how will it affect the concrete properties.	[L1][CO2]	[5M]
9	a	How would you grade the aggregates by conducting sieve analysis on aggregates in	[L1][CO2]	[8M]
	b	laboratory? Explain the procedure with appropriate table.	[L1][CO2]	[2][1]
		Write short notes on gap graded aggregates.		[2M]
10	a	List the physical properties of aggregates. Explain any two properties.	[L2][CO1]	[5M]
10	b	What are all the mechanical properties of aggregates? Explain any one with	[L2][CO2]	[5M]
		experimental procedure.		

UNIT –II <u>HARDENED CONCRETE</u>

1	a Define water cement ratio.	[L1][CO3]	[2M]
	b Define Abram's law.	[L1][CO3]	[2M]
	c Define curing.	[L1][CO3]	[2M]
	d List the different factors affecting workability.	[L1][CO3]	[2M]
	e Write different mechanical properties of concrete.	[L1][CO3]	[2M]
2	Briefly explain about manufacturing of concrete.	[L2][CO3]	[10M]
3	With neat diagram, write the procedure involved in determining the split tensile	[L2][CO3]	[10M]
	strength of concrete.		
4	Explain the various factors affecting strength of hardened concrete.	[L2][CO3]	[10M]
5	a Explain the Maturity concept for strength development of concrete.	[L2][CO3]	[5M]
	b Explain the relation between compression strength and tensile strength of	[L2][CO3]	[5M]
	concrete.		
6	a Shortly explain about Gel space ratio	[L2][CO3]	[5M]
	b Explain different methods of curing procedure.	[L2][CO3]	[5M]
7	Explain the procedure for compression test of hardened concrete	[L2][CO3]	[10M]
8	Explain the procedure for determination of flexural strength of hardened concrete	[L2][CO3]	[10M]
9	Explain the phenomenon of gain of strength of concrete with age.	[L1][CO3]	[10M]
10	What is curing? What are the different methods of curing?	[L1][CO3]	[10M]

UNIT –III ELASTICITY. CREEP & SHRINKAGE. NON-DESTRUCTIVE TESTING METHODS

1	a	Differentiate destructive testing and Non destructive testing.	[L1][CO4]	[2M]
	b	Define Creep.	[L1][CO4]	[2M]
	С	Define Shrinkage.	[L1][CO4]	[2M]
	d	List out different tests in NDT.	[L1][CO1]	[2M]
	e	Define Dynamic modulus of Elasticity.	[L1][CO4]	[2M]
2	Ex	plain Schmidt's Rebound Hammer test and the limitations and applications of the	[L2][CO4]	[10M]
	sar	ne.		
3		plain the various pulse velocity methods and the techniques measuring the	[L2][CO4]	[10M]
	pul	se velocity through concrete.		
4	a	What are the various factors affecting the compressive strength of concrete?	[L1][CO4]	[5M]
	b	Explain in detail about the rebound hammer test (NDT) that is conducted on	[L2][CO4]	[5M]
		existing structure to assess its strength with a neat diagram.		
5	Ex	plain Creep of concrete and relation between creep and time.	[L2][CO4]	[10M]
6	a	How the shrinkage of concrete is classified? And explain each one of them briefly.	[L1][CO4]	[5M]
	b	Explain the procedure to conduct Modulus of elasticity test in the laboratory	[L2][CO4]	[5M]
		and explain the various factors affecting the modulus of elasticity.		
7	Wi	ite the procedure involved in conducting pullout test. Write its significance.	[L1][CO4]	[10M]
8	a	What is shrinkage of concrete?	[L1][CO4]	[5M]
	b	Explain the various factors affecting shrinkage of concrete.	[L2][CO4]	[5M]
9	a	What are the factors that affect the creep and shrinkage of concrete?	[L1][CO4]	[5M]
	b	How will you find the reinforcement's location and dimension using profometer.	[L1][CO4]	[5M]
		Explain briefly.		
10	Ex	plain the procedure for UPV and Rebound hammer test.	[L2][CO4]	[10M]

UNIT –IV <u>PERMEABILITY AND DURABILITY</u>

	r			[0] []
1	a	Define permeability of concrete.	[L1][CO5]	[2M]
	b	How the permeability of concrete affects the strength?	[L1][CO5]	[2M]
	c	What are the factors affecting durability of concrete?	[L1][CO5]	[2M]
	d	What do you mean by hardened concrete?	[L1][CO5]	[2M]
	e	List the factors affecting strength of hardened concrete?	[L1][CO5]	[2M]
2	Ex	plain about factors affecting permeability of concrete.	[L2][CO5]	[10M]
3	Ho	ow the performance of concrete is affected by acid attack. Write briefly.	[L2][CO5]	[10M]
4	Which are all the effects of Sulphate attack on concrete? Explain briefly.[L2][CO5]			[10M]
5	Do you think the sea water affect the strength of concrete? If yes, explain how?			[10M]
6	Explain briefly about chloride attack on concrete [L2][CO5]			[10M]
7	Explain the phenomenon of corrosion in steel. Suggest the methods for corrosion []			[10M]
	control.			
8	Ho	w would you improve the quality of concrete by doing surface treatment. Explain	[L1][CO5]	[10M]
	wi	th appropriate examples.		
9	W	rite briefly about deterioration of concrete by Abrasion, Erosion and Cavitation.	[L1][CO5]	[10M]
10	W	rite and explain the effects of materials on durability.	[L1][CO5]	[10M]

UNIT –V <u>MIX DESIGN</u>

1	a	What are the data used for ACI	[L1][CO6]	[2M]
1	a b	What are the data discussion rect What is the strength of concrete after 7 days?	[L1][CO6]	[2M]
	c	How mixing operation is done in concrete.	[L1][CO6]	[2M]
	d	What is nominal mix and design mix?	[L1][CO6]	[2M]
	e	List out the usage of slump values	[L1][CO6] [L3][CO6]	[2M]
2	Design a concrete mix of M20 grade for a roof slab. Take a standard deviation of			[10M]
	4MPa. The specificgravities of Coarse Aggregate and Fine Aggregate are 2.67 and			
	2.73 respectively. The bulk density of coarse aggregate is 16020 $\mbox{Kg/m}^3$ and			
	Fineness Modulus of Fine Aggregate is 2.76. A slump of 50mm is necessary. The			
	wat	ter absorption of coarse aggregate is 1% and free moisture in fine aggregate is		
	3%	. Design the concrete mix using ACI method. Assume any missing data suitably.		
3	Exp	plain the mix design procedure of concrete as per ACI code Method.	[L2][CO6]	[10M]
4	Des	sign a M35 concrete mix using IS method of Mix Design for the following data:	[L3][CO6]	[10M]
		1) Maximum size of aggregate - 20mm (Angular)		
		2) Degree of workability - 0.90 compaction factor.		
		3) Quality control - good		
		4) Type of exposure - mild		
		5) Specific Gravity A. Cement - 3.12 (B. Sand - 2.63 (C.		
		Coarse aggregate - 2.666) Water absorption: A. Coarse		
		aggregate - 0.5% (B. Fine aggregate - 1.0%)		
		7) Free surface moisture: (A. Coarse aggregate - Nil (B.		
		Fine aggregate - 2.2%8) Sand confirms to Zone I grading.		
	Ass	sume any other data required suitably.		
5	Des	sign a M30 concrete mix using IS method of Mix Design for the following data:	[L3][CO6]	[10M]
		1) Maximum size of aggregate - 20mm (Angular).		
		2) Degree of workability - 0.90 compaction factor.		
		3) Quality control - good		
		4) Type of exposure - severe		
		5) Specific Gravity: A. Cement - 3.10 B. Sand - 2.68 C. Coarse aggregate - 2.69		
		6) Water absorption: A. Coarse aggregate -1.0% B. Fine aggregate - 2.0%		
		 Free surface moisture: A. Coarse aggregate- Nil B. Fine aggregate- 2.0% 		
		8) Sand confirms to zone III grading.		
	Ass	sume any other data required suitably		

R18 Course Code: 18CE0136 **a** Define the term "Mix Design of Concrete" and explain its significance. [5M] [L1][CO6] 6 **b** Briefly discuss various methods of the mix design available in literature. [L2][CO6] [5M] [L2][CO6] 7 Brief explain about factors affecting choice of mix design. [10M] Explain quality control of concrete and durability of concrete. 8 [L2][CO6] [10M] 9 Explain the mix design procedure of concrete as per IS code Method. [L2][CO6] [10M] What are the factors considered in Mix Proportions? Explain Briefly. [L1][CO6] 10 [10M]

> Prepared by: Dr. R. Srinivasan Professor CE.